Minimal attractors and bifurcations of random dynamical systems

نویسنده

  • Peter Ashwin
چکیده

We consider attractors for certain types of random dynamical systems. These are skew-product systems whose base transformations preserve an ergodic invariant measure. We discuss definitions of invariant sets, attractors and invariant measures for deterministic and random dynamical systems. Under assumptions that include, for example, iterated function systems, but that exclude stochastic differential equations, we demonstrate how random attractors can be seen as examples of Milnor attractors for a skew-product system. We discuss the minimality of these attractors and invariant measures supported by them. As a further connection between random dynamical systems and deterministic dynamical systems, we show how dynamical or D-bifurcations of random attractors with multiplicative noise can be seen as blowout bifurcations, and we relate the issue of branching at such D-bifurcations to branching at blowout bifurcations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations of Chaotic Attractors in One-Dimensional Piecewise Smooth Maps

It is well known that dynamical systems defined by piecewise smooth functions exhibit several phenomena which cannot occur in smooth systems, such as for example, border collision bifurcations, sliding, chattering, etc. [di Bernardo et al., 2008]. One such phenomenon is the persistence of chaotic attractors under parameter perturbations, referred to as robust chaos [Banerjee et al., 1998]. In t...

متن کامل

On Random Attractors for Mixing Type Systems ∗

The paper deals with infinite-dimensional random dynamical systems. Under the condition that the system in question is of mixing type and possesses a random compact attracting set, we show that the support of the unique invariant measure is the minimal random point attractor. The results obtained apply to the randomly forced 2D Navier–Stokes system.

متن کامل

Multiple attractors via CUSP bifurcation in periodically varying environments

Periodically forced (non-autonomous) single species population models support multiple attractors via tangent bifurcations, where the corresponding autonomous models support single attractors. Elaydi and Sacker obtained conditions for the existence of single attractors in periodically forced discrete-time models. In this paper, the Cusp Bifurcation Theorem is used to provide a general framework...

متن کامل

Transverse instability for non-normal parameters

Suppose a smooth dynamical system has an invariant subspace and a parameter that leaves the dynamics in the invariant subspace invariant while changing the normal dynamics. Then we say the parameter is a normal parameter, and much is understood of how attractors can change with normal parameters. Unfortunately, normal parameters do not arise very often in practise. We consider the behaviour of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998